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Note 

Comment on 

“On Boundary Conditions for Hyperbolic Difference Schemes” 

In a recent paper [l], Gary studies different boundary conditions for the method of 
lines. In case A the problem 

is approximated by 

+ 0, j=l,2 J, ,.-., 

UJ - a-1 
Ax 

- = 0: 

which can be written in the compact form 

A% = MU. 
dt 

System (2) is inconsistent in the sense that (1) requires boundary data at x = 0, but 
no such data are given for the semidiscrete scheme. This is an interesting case, because 
in applications boundary data are sometimes missing, and approximations of type (2) 
are used. 

Gary computes numerically the eigenvalues X of M and finds that despite the 
inconsistency, there are no h-values in the right half plane, but that there appears to 
be a double or triple eigenvalue at the imaginary axis. In this note we show that this 
is a natural property. 

System (2) is the equivalent of defining a new point at x = --Ax and using linear 
extrapolation for zzel , 

u-1 = 224, - u, , 

This is an approximation of 

a224 o -= 
3x2 

at x = 0, (3) 
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and apparently problem (l), (3) admits solutions 

u = a(t - x) c p 

for arbitrary constants 01 and ,8. The linear growth is reflected in the double eigen- 
value X mentioned above. 

The second equation of (2) is the one causing the instability. Therefore we will in- 
vestigate the half-plane problem 

After a Laplace transformation we obtain 

svj + %+1 - vj-1 
2LlX = 0, j 

Vl - Do 
svo + 7 = 0 

which has the solution 

Vj = Of-SAX + ((SAX)’ + l)““)‘, 

where we get from the boundary condition 

- 

1, 2,..., 

1) 2,..., 

Re s > 0, 

(((SAX)2 + l)i” - 1) 0 = 0. 

Therefore we have a nontrivial solution for (sAx)~ = 0, and s = 0 is a double eigen- 
value to (4). (Actually, s = 0 is a generalized eigenvalue, since vj s 5.) This is the 
explanation of the behavior described in [l]. 

As we noted above, the procedure at the boundary is equivalent to extrapolation. 
Considering the more general extrapolation formula 

6,%L, = 0, p = 1, 2,..., 6,l.Q = “j+l - uj ) 

we get the condition 

(--SAX + ((SAX)” + l)ljz - 1)~ = 0 
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or equivalently 

(SLIX)~~ --= 0. 

Hence, the multiplicity of the eigenvalue s = 0 is p. The conclusion is that the higher 
the order of extrapolation (i.e., the higher the accuracy), the worse the result, since 
we get a higher-order polynomial growth with time; see also [2]. 

The analysis made here is for the quarter space problem x >, 0, t 2 0. In general, if 
the boundary x = 1 is also taken into consideration, a higher-order growth or an 
exponential growth may occur. According to the numerical results referred to in [l], 
a third-order polynomial growth may have been introduced for J odd. 

A general theory for the method of lines was recently presented by Strikwerda [3]. 
According to that theory (and also according to the theory for the fully discretized 
scheme) condition (5) leads to an instability also for p = 1. However, in [2] it is 
proved for the Lax-Wendroff scheme that for smooth initial dataf(x) with dfldx = 0 
at x 7: 0 we still get a solution which converges when dx 3 0 to a limit function 
satisfying ~(0, t) =f(O). 
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